The photoelectron transfer between semiconductors and cells is the rate-determining step that controls the solar H2 production of whole-cell inorganic-biohybrid systems (IBSs). Herein, we constructed an IBS by using reduced graphene oxide (RGO) to integrate Shewanella oneidensis MR-1 (SW) cells and Cu2O, which exhibited a 11–38-fold enhancement of photocatalytic H2 production compared with RGO-free IBSs (Cu2O/SW and Cu2O/organic electron mediator/SW). Further analysis revealed that RGO provided multifunctional contributions to H2 production from IBS, that is, sufficient area for IBS supporting, efficient photoelectron collection from Cu2O, and effective electron distribution into the cells. This study offers opportunities for rationally designing electron transfer pathways to achieve high-performance IBSs.